This function builds Expected Fantasy Points predictions by downloading the xgboost models and play-by-play data, applying the model, and summarizing to player level.
Usage
ep_build(season = nflreadr::most_recent_season(), version = "latest")
Value
a list containing three dataframes: ep_weekly
provides a game-level summary by player, ep_pbp_pass
provides EP data on pass plays, and ep_pbp_rush
provides EP data on rush plays.
See also
Other main:
ep_load()
Examples
# \donttest{
try({ # prevents cran-related errors
ep_build(season = 2021)
})
#> ── Starting ep build for 2021 season(s)! 2024-08-09 03:32:30.984746 ────────────
#> → Downloading EP models, if required 2024-08-09 03:32:30.98874
#> ℹ Could not find ep model version "latest" in cache directory:
#> ~/.cache/ffopportunity
#> ℹ Attempting download
#> ✔ Successfully downloaded ep model version "latest" to cache!
#> → Loading pbp 2024-08-09 03:32:32.886529
#> → Preprocessing pbp 2024-08-09 03:32:36.562289
#> → Generating predictions 2024-08-09 03:32:46.821714
#> → Summarizing data 2024-08-09 03:32:47.576926
#> ── Finished building ep for 2021 season(s)! 2024-08-09 03:32:47.579757 ─────────
#> → <ffopportunity predictions>
#> → Generated 2024-08-09 03:32:47.58329 with model version latest
#> List of 5
#> $ ep_weekly : tibble [6,065 × 159] (S3: tbl_df/tbl/data.frame)
#> $ ep_pbp_pass: nflvrs_d [19,769 × 57] (S3: nflverse_data/tbl_df/tbl/data.table/data.frame)
#> $ ep_pbp_rush: nflvrs_d [15,164 × 50] (S3: nflverse_data/tbl_df/tbl/data.table/data.frame)
#> $ ep_version : chr "latest"
#> $ timestamp : POSIXct[1:1], format: "2024-08-09 03:32:47"
# }